Optimized MASS device for synchronous measurements with Paranal DIMM. Optical and mechanical design. Alignment.

Kornilov V., Potanin S., Shatsky N., Shugarov A., Voziakova O.

January 15, 2004

Contents

1 Optics design 7
1.1 Basic principles 7
1.2 Principal geometry of MASS device 8
1.2.1 Entrance and exit pupils. System magnification 8
1.2.2 Fabry lens 10
1.3 MASS optics 11
1.3.1 Pupil segmentation unit 11
1.3.2 MASS channels A, B, C, and D 11
1.3.3 MASS spectral response 14
1.4 Field aperture, centering mechanism and viewer 15
2 Mechanical design 17
2.1 General description 17
2.1.1 General characteristics 17
2.1.2 Device skeleton 17
2.1.3 Optical bench 20
2.1.4 Other assembly units 21
2.1.5 Electronics module design 22
2.2 Alignment possibilities 22
2.2.1 Fabry lens and viewer optics 23
2.2.2 MASS channels optics 24
2.3 Disassembling and assembling 24
2.3.1 Disassembly sequence for alignment, maintenance or repair 24
2.3.2 Disassembly of the electronics module 25
2.3.3 Assembly 25
3 Alignments 26
3.1 Preliminary alignments 26
3.1.1 MASS PSU alignment 26
3.2 Device alignments at the telescope 28
3.2.1 Fabry lens position 28
3.2.2 Viewer alignment 29
4 Critical parameters determination 30
4.1 System magnification 30
4.2 MASS detectors parameters 31
4.2.1 PMT optimal voltage and discrimination determination 31
4.2.2 Non-linearity and Non-poissonity determination 32
A Optical parts specifications 34
A. 1 The specifications for MASS purchased optical elements 34
A. 2 The specifications for MASS special optical elements manufactured by the con- tractor 35
B List of mechanical parts 36

List of Figures

1.1 Principal optical layout used for calculation 9
1.2 Optical layout of MASS device in ZY plane 12
1.3 Optical layout of the MASS device in ZX plane 13
1.4 MASS segmentator 13
1.5 Spectral response of the MASS device 15
1.6 Image scans produced by centering mechanism 16
2.1 View of the device 18
2.2 Main dimensions of the MASS device with optical interface. 19
2.3 View of the device without cover 20
2.4 Optical bench unit 21
2.5 View of the electronic module 23
3.1 Photocathodes position 27
3.2 System magnification adjust 28
4.1 Counting functions 32
4.2 Dependence of non-Poisson parameter p on flux F 33

List of Tables

1.1 The telescope parameters adopted for MASS optical design. 8
1.2 The MASS main optical parameters 10
1.3 PSU and entrance segment dimensions 14
1.4 MASS spectral response in relative photon units. Wavelengths in nanometers 15

Introduction

This document describes the optical and mechanical design of a low-resolution turbulence profiler (MASS) optimized for synchronous observation with Paranal DIMM, according with a Proposal to ESO [1]. The project was implemented in frame of the ESO contract No. $69255 / \mathrm{ODG} / 02 / 9124 / \mathrm{GWI}$. The electronics of the device and details related to it are presented in a separate document [7]. Also, separate documents contain Turbina Software reference guide, Turbina user guide [11], and Supervisor user guide [8], which complete the full description of the MASS instrument and its control software.

The MASS optical scheme was specially calculated for the use with a short refractive feeding telescope C102 from Celestron company or similar.

The principles of the work of MASS are described in [4]and [2]. Meanwhile, according to the experience obtained in a year-long exploitation of the original MASS device [5], some changes have been introduced in the geometry of the main optical component of MASS - pupil segmentation unit.

The Chapter 1 of the document presents the final optical parameters of elements together with the tolerances for the critical measures. In addition, the tables give the full specifications for the optical elements, both for the standard ones for purchasing in commercial companies and the special elements manufactured by the contractor.

The Chapter 2 describes the general mechanical design of the instrument. The sequence of assembly/disassembly is presented as well.

The next chapter is a guide for alignment of the optical scheme elements - the operation which is mandatory after the device assembly or while installing the device on the telescope. Exit pupil optics tuning (MASS segmentator), focusing and lateral positioning of the Fabry lens, checking the entrance pupil position are the subjects of particular attention.

Lastly, the Chapter 4 helps to compute the principal parameters of the device resulted from the finished alignment procedure. This is critical for correct interpretation of the scintillation data which is performed by the MASS software. Appendices which follow give technical parameters of the optical and mechanical device components.

Bibliography

[1] Kornilov V., The optimization of MASS device for synchronous measurement with Paranal DIMM. A Proposal to European Southern Observatory (ESO). December 11, 2002
[2] Kornilov V., Potanin S., Shatsky N., Voziakova O., Zaitsev A. Multi-Aperture Scintillation Sensor (MASS). Final design report. February 2002.
[3] Kornilov V., Potanin S., Shatsky N., Voziakova O., Shugarov A. Multi-Aperture Scintillation Sensor (MASS) Upgrade. Final report. January 2003.
[4] Kornilov V., Tokovinin A., Voziakova O., Zaitsev A., Shatsky N., Potanin S., Sarazin M. MASS: a monitor of the vertical turbulence distribution. Proc. SPIE, V. 4839, p. 837-845, 2003
[5] A.Tokovinin, V.Kornilov, N.Shatsky, O.Voziakova, Restoration of turbulence profile from scintillation indices, MNRAS 2003, V. 343, P. 891
[6] Sarazin M., Roddier F., The E.S.O Differential Image Motion Monitor Astron. Astrophys. 227, 294-300 (1990).
[7] Kornilov V., Shatsky N., Shugarov A., Voziakova O. Optimized MASS device for synchronous measurements with Paranal DIMM.
Electronics and Device control. November 2003.
[8] Kornilov V., Shatsky N., Voziakova O. Supervisor program User Guide. SV version 0.22, January 2004.
[9] Tokovinin A. Polychromatic scintillation. JOSA(A), 2003, V. 20 P. 686-689
[10] Kornilov V., Potanin S., Shatsky N., Voziakova O. Optimized MASS device for synchronous measurements with Paranal DIMM.
Optical parameters and general design. July 2003.
[11] Kornilov V., Potanin S., Shatsky N., Voziakova O. MASS Software User Guide Version 2.04. December, 2003.

Chapter 1

Optics design

1.1 Basic principles

We shortly remind here the principles of a Multiaperture scintillation sensor (MASS) instrument. MASS measures four scintillation indices in small central circular aperture and 3 concentric annular aperture as well as 6 differential scintillation indices for all possible pairwise aperture combinations. Scintillation indices produced by a turbulent layer at some altitude h depend the turbulence intensity, on the aperture geometry and on the spectral range (so called weighting function $W(h)[4,5,9])$.

Using these 10 measured values, a calculation of some integral characteristics of the atmospheric turbulence and a restoration of turbulence vertical profile with low-resolution (5-6 fixed layers) are possible. All the weighting functions drop to zero at zero altitude.

DIMM (Differential image motion monitor) measures fluctuations of the angular distance between two images produced by two circular apertures about $8-10 \mathrm{~cm}$ diameter separated by about 20 cm . Theory states that the rms image motion is proportional to the turbulence integral over full atmosphere [6]. So, the weighting function for DIMM is un-depending on altitude.

The idea to use two different turbulence measuring devices synchronously pointed at the same star using one mount, grew from the following:

- Multiaperture scintillation sensor (MASS) doesn't sense turbulence located in boundary layer (first 1 km above ground). Possible solution - a generalized mode of MASS measurement, was tested with original MASS device. It was found that this method will be able give a reasonable results with large aperture feeding telescope only. On the other hand, DIMM measures both low and high turbulence.
- Numerical simulations show [5] that reducing the largest MASS annular entrance aperture (the segment D) down to 8.5 cm optimizes the method sensitivity for middle altitudes. This means that a non-expensive refractive telescope with diameter 10 cm can be used to feed the MASS device. Such a refractor can be installed in parallel of the Paranal DIMM as a piggy-back device.

The following general solution was chosen and implemented in optimized MASS instrument for turbulence measurements:

- in order to enlarge short focal length of the refractor, the special optical interface is included in optical scheme.
- to re-image the plane of entrance pupil of feeding telescope to the exit pupil plane;
- to split the light with the help of a segmentator unit (see [2]) onto four MASS channels, and to re-image the exit pupil at photocathodes of MASS detectors.

These general ideas follow the principles of the original MASS design.
The following Sections describe this scheme in details.

1.2 Principal geometry of MASS device

The MASS device was designed and calculated for usage with a compact telescope - refractor. For the calculation of the design parameters, the data listed in the Table 1.1 were used. The schematic drawing of the feeding refractor with principal part of the modified MASS device is shown in Fig. 1.1 where the measures used in further calculations are shown as well. The high-power negative lens is placed before the focal plane to reduce the beam convergence and obtain thus the equivalent focal length about 2 m . This combination of the objective PR and the negative lens (transfocator) TF is called the "telescope" throughout this document.

Position x of TF lens from the focal plane $F_{P R}$ defines the magnification m at the lens, the new effective focal length of the telescope, and location of the new focal plane F (similarly to the role of a secondary mirror in Cassegrain telescope). In our case, the focusing of the instrument is done by change of the distance between the objective and TF lens. Comparing to Cassegrain telescope, we have more freedom to parameters optimization, because the focal length of the TF can be varied, too.

Table 1.1: The telescope parameters adopted for MASS optical design. All dimensions are in millimeters

Parameter	C102 telescope
Nominal focal length $F_{P R}$	500
Diameter of objective $D_{P R}$	102

1.2.1 Entrance and exit pupils. System magnification

To make an image of the entrance pupil, a Fabry lens with some focal length $F_{\text {abry }}$ must be placed on optical axis of the instrument. Exit pupil will be located at a distance af (according to Fig. 1.1) from the lens. Really, the Fabry lens re-builds not original entrance pupil but its image produced sequentially by objective of a telescope and transfocator TF lens. The dimension and location of this image depend on the exact geometry of the telescope (recall that telescope includes TF lens) and change slowly when telescope is refocused.

Physically, the position of the exit pupil is fixed, and the location of the entrance pupil plane is defined by the telescope system as well as by the Fabry lens focal length and position. The entrance pupil location is not important for the results of measurements. Since the elements splitting light between channels are placed in the exit plane and work as aperture stop, the

Figure 1.1: General optical layout. S - pupil segmentation unit, $\mathrm{F}_{P R}$ - feeding refractor focal plane, F - refractor+transfocator focal plane, F' - refractor+transfocator+Fabry lens focal plane, PR refractor objective, TF - transfocator lens, LF - Fabry lens, S' - image of S produced by Fabry lens, $S^{\prime \prime}$ - image of S^{\prime} built by TF lens, E - entrance pupil of the system, which is the image of $S^{\prime \prime}$ produced by refractor objective. All values designed by right arrow are positive, otherwise - negative. Other values are explained in text.
working entrance pupils for the MASS devices can be defined in reverse light path as the images of these pupil stops produced by the Fabry lens + telescope optical system.

The ratio of the diameter of an aperture in the entrance pupil plane to the diameter of respective physical element placed in the exit plane, is the magnification K of the instrument. It depends on the telescope and device geometry as well. More exactly: the lengths a, c, Fabry lens focal length $F_{a b r y}$ and its location $d a^{\prime}$ define both the magnification K of the instrument and the location of the entrance pupil for a given telescope with parameters $F_{P R}$ and $F_{T F}$.

For the design, the location of the entrance pupil plane was chosen to be 50 mm before a pole of a feeding refractive objective near the front edge of the telescope tube. Such a position is very convenient for instrument check and alignment.

The nominal value of $K=15.00$ was chosen ($K \approx 20$ in the original MASS). The exact value of system magnification influences final results of the MASS, because the geometry of entrance pupil is used in computation turbulence intensity from directly measured values.

Table 1.2: The MASS main optical parameters, transfocator including. All dimensions are in millimeters

Optical	Nominal parameter
Transfocator lens focal length $F_{T F}$	-18
Fabry lens focal length $F_{\text {abry }}$	60
Fabry lens diameter $D_{\text {abry }}$	25
Distance between FP and EP planes a	123
Distance between FP and TF lens c	116.7
LF position with respect focal plane $d a^{\prime}$	-38
Instrument magnification K	16.6
Entrance pupil plane position b_{E}	-50
Scale in the focal plane $s c a l e_{F}$	$101^{\prime \prime}$

1.2.2 Fabry lens

The optical layout of the MASS instrument (without feeding telescope) is presented in Fig. 1.2. The coordinate system which is used here and further, is as follows:

- Z-axis along optical axis of the instrument
- Y-axis lies in plane of symmetry of the instrument towards viewer.
- X-axis is perpendicular to both Z- and Y-axes.

In order to diminish overall dimensions of the device, the Fabry lens LF is placed before the focal plane of the telescope. In this case the Fabry lens shifts the focal plane to a new position FP where we have a real image of a target star. In this plane the field aperture FA is placed. Additionally, such LF placement protects the interior optics of the device from dust.

Such design requires re-focusing the telescope each time the Fabry lens is shifted along the axis. The possibility to move Fabry lens along optical axis is necessary in order to adjust the
system magnification, which can differ from its nominal value due to lens focal length tolerance and uncertainties in telescope geometry.

In the Table 1.2 the main optical parameters of the MASS device are listed. Catalog of Edmund Optics company was used to select the Fabry and transfocator lens. The exact formulae for computations are presented in [10]. The consideration showed that transfocator and Fabry lenses focal lengths are mutually constrained. Note, that short TF focal length providing more compact optical interface between refractor and MASS, requires shorter LF focal length. Optimal pair was chosen as is shown in Table 1.2.

1.3 MASS optics

The optical scheme of the MASS device itself is shown in Fig. 1.2 as ZY plane view, and in Fig. 1.3 as ZX plane view (from viewer side). The main optical element of the MASS device is the pupil segmentation unit (PSU). PSU forms four reflected beams and reflects them in different directions. The chosen magnification as well as telescope objective diameter, force to adopt the maximal outer diameter of the MASS pupil segmentation unit as 5.5 mm .

1.3.1 Pupil segmentation unit

The PSU is located on the instrument optical axis (see Fig. 1.3). The exact position of the exit pupil at PSU is provided by shifting the Fabry lens in Y and X directions. This is done during Fabry lens alignment.

To provide the light reflection from the PSU segments in needed directions to the re-imaging mirrors RA, RB, RC, and RD, the segment mirrors are produced tilted by 8.0° to the PSU rotation axis. Then, the segments of the PSU are rotated around PSU axis so that the rotation angle between the adjacent segments equals 30°. In order to compensate partially for the large segments tilt and to place the re-imaging mirrors closer to the instrument optical axis, the PSU as a whole is inclined by 1.65° around X axis.

Angles between the segment normals and incident/reflected beam are 6.9° for outer channels A,D and 6.4° for inner channels B,C. Segments have concave surface with a curvature radius of 250 mm that ensures non-divergent beams after the reflection from segmentator. This permits to use small re-imaging mirrors. Despite the segments tilt, their projections are circular with high accuracy.

Using the optimal set of MASS apertures [5] the dimensions of the PSU segments were chosen as listed in Table 1.3.

The PSU is fabricated from hard bronze, its mirrors are polished as a whole with optical quality. The reflecting coating is made by evaporation under vacuum and consists of 3 layers: a Chromium layer deposited on the bronze, an Aluminum layer, and a protective SiO overcoating. The microphotograph of the PSU is shown in Fig. 1.4. Final diameters of PSU segments, measured with the help of such microphotographies for all produced segmentator, agree well with the nominal diameters of Table 1.3.

1.3.2 MASS channels A, B, C, and D

MASS Pupil segmentation unit produces four reflected beams. Each beam falls on the corresponding re-imaging spherical mirror RA, RB, RC, and RD.

Figure 1.2: Optical layout of MASS device in ZY plane. LF - Fabry lens, FP - instrument focal plane, FA - field aperture, ExP - plane of exit pupil, PSU - pupil segmentation unit, RA, RB, RC, RD - re-imaging mirrors, SF - spectral filter, PMTs - MASS detectors, MV viewer removable mirror, CC - glass plate with central hole, V1, V2 - transmoving objective, EP - eye-piece.

Figure 1.3: Optical layout of the MASS device in ZX plane (corresponds to the bottom view in Fig 1.2). Viewer is not shown. LF - Fabry lens, FP - instrument focal plane, FA field aperture, TK - triangle knife of centering unit, ExP - plane of exit pupil, PSU - pupil segmentation unit, RA, RB, RC, RD - re-imaging mirrors of the A-, B-, C-, and D-channels, SF - spectral filter, PMT - four detectors.

Figure 1.4: On the left: Top view of one of the MASS segmentator, illuminated by scattered light. On the right: Segmentator mounted in its holder.

Table 1.3: PSU segment dimensions and entrance segment dimensions. All values are in millimeters

Segment/ Channel	Physical diameter	Entrance diameter
Segment D outer	5.50	91.3
Segment D inner	3.90	64.7
Segment C outer	3.85	63.9
Segment C inner	2.20	36.5
Segment B outer	2.15	35.7
Segment B inner	1.30	21.6
Segment A outer	1.27	21.1

MASS re-imaging mirrors are chosen to be the same as in original MASS, i.e. 12.5 mm diameter and 51 mm focal length. The distances from the PSU to mirrors are equal to 120 mm for all mirrors, the distances from mirrors to corresponding PMTs are 88.7 mm . The angles between the mirror normals and incident/reflected beams are 12.3° for outer channels A, D and 9.7° for inner channels B,C. Usage of simple spherical mirrors under such angles produces significant astigmatism.

Re-imaging mirrors are tilted slightly to direct light to PMT photocathodes. The outer mirrors are symmetrically tilted by 4.6° around Y -axis and by -2.3° around X -axis. The inner mirrors - by 2.0° and 2.7°, respectively. The resulting tilt of the outer mirrors (normal to Z-axis angle) is 5.12°. The normal projection onto the XY plane has a position angle $\pm 117^{\circ}$ with the axis Y. For the inner mirrors, this angle is 3.31° while their position angle is $\pm 36^{\circ}$. Reimaging mirrors are coated by multi-layer dielectric film, reflecting up to 99% in the blue-green region of the spectrum.

Light falls onto photocathodes under relatively large angles $\left(13^{\circ}\right.$ to $\left.15^{\circ}\right)$, contributing to the distortion of PSU segment images. The effect of star motion into field aperture was estimated, and no significant energy re-distribution at photo-cathodes was found. The size of the segment images on the photocathodes is reduced by 0.73 , so the largest image (D segment) has diameter about 4.0 mm .

The glass spectral filter FS are placed between the PSU and field aperture into central blind. The filter defines the short-wave cutoff of the MASS spectral response.

1.3.3 MASS spectral response

Compact photomultipliers R7400P from Hamamatsu are used as light detectors. These PMTs have bi-alkali photocathode of 7 mm diameter. The spectral sensitivity is typical of bi-alkali photocathodes.

The spectral response of MASS is shaped by the PMT spectral sensitivity, the transmittance of the spectral filter SF and the reflectance of the re-imaging mirrors. The final spectral response is shown in Fig. 1.5 and numerical data are presented in the Table 1.4. Such spectral response produces a dependence of MASS magnitude on star color. In Fig. 1.5 (right) the dependence is

Figure 1.5: On left: Spectral response of the MASS device. On right: Color equation between MASS magnitude and star color index B-V.
plotted. Transformation from standard V magnitude is described as follows:

$$
M A S S=V+0.347(B-V)
$$

Table 1.4: MASS spectral response in relative photon units. Wavelengths in nanometers

λ	$S(\lambda)$	λ	$S(\lambda)$	λ	$S(\lambda)$
420	0.000	500	0.823	580	0.203
430	0.004	510	0.729	590	0.160
440	0.206	520	0.636	600	0.061
450	0.720	530	0.552	610	0.025
460	0.963	540	0.467	620	0.029
470	1.000	550	0.391	630	0.005
480	0.956	560	0.317	640	0.004
490	0.891	570	0.255	650	0.000

The integral parameters of the MASS spectral response are: effective wavelength for A0 star 496 nm , effective spectral bandwidth about 85 nm .

1.4 Field aperture, centering mechanism and viewer

A field aperture is located in the focal plane of the instrument. It serves to limit the contribution of sky background to the light measured by MASS detectors. The aperture also limits the field of view of the centering mechanism: for this reason, a compromise size of the field aperture as large as $2.2 \mathrm{~mm}\left(4^{\prime}\right)$ was chosen. The aperture is made as a hole in a flat thin steel plate.

Figure 1.6: Image scans produced by centering mechanism. On left - scan of a point-like image, on right - scan of uniformly illuminated aperture.

The size of a wide field of view for star finding is defined by the viewer design and is about 9 mm or 16^{\prime}. To view this field, a moving mirror MV is shifted onto the optical axis of the device. The selected star must be placed into the central hole (it is seen as red circle when FOV illumination is on) of a glass plate CC, which is co-aligned with the field aperture to better than 0.2 mm (about $20^{\prime \prime}$). In this case, after removing of the mirror, light passes to MASS detectors. Further star centering can be done by the centering mechanism.

Star centering unit is based on the triangle non-transparent knife moving across field aperture. Edges of the knife are tilted at 45° to direction of the motion along X axis. When the knife is in the center, it fully closes the aperture. Method calibration is based on a following fact: if the field aperture is uniformly illuminated (by bright sky, for example), the level 0.5 of a maximal signal is achieved when one of the knife edges crosses exactly the aperture center (see Fig. 1.6). There are two such points, obviously. Comparing a star scan slopes position with these reference points, the star image shift can be obtained.

The viewer is not used in a normal work since the parallel DIMM provides the telescope pointing at the star, star searching if necessary and guiding during measurements. In practice, the viewer serves as an auxiliary tool for coalignment of DIMM and MASS feeding optics and in extraordinary cases. The optical layout of the viewer is presented in Fig. 1.2 where the main viewer parts are shown.

Removable mirror MV has dimensions $12 \times 18 \mathrm{~mm}$. When inserted in the beam, it is placed at 40° angle with respect to the optical axis of the device. This provides the viewer axis tilt equal to 80° with respect to the instrument optical axis.

The re-imaging system of the viewer consists of two achromatic lenses V1 and V2 ACH18x50 (Edmund optics; focal length 50 mm , diameter 18 mm) and reproduces the instrument focal plane with magnification -1 . The lenses are separated by 75 mm distance.

Standard $1 \frac{1}{4}$ inches eye-piece with focal length $12-15 \mathrm{~mm}$ is used with the viewer. The eye-piece is located at 220 mm from the axis of the device (or telescope) to provide easy access for the observer. The viewer is placed in plane ZY.

Chapter 2

Mechanical design

2.1 General description

2.1.1 General characteristics

As it was shown above, the optimized MASS device is installed at feeding telescope-refractor using mechanical and optical interface. The interface can be considered as the part of the device, too. The general view of the MASS device for synchronous atmospheric turbulence measurement is presented on Fig. 2.1. In the Fig. 2.2 overall device dimensions are shown. Note, that the main box of the device is practically the same to one designed for CTIO/TMT projects.

Practically all parts of the device are fabricated from hard aluminum alloy, black-anodized. Only few critical parts are made from steel. Total weight of the MASS instrument is about 1.5 Kg . The device is mounted at refracting telescope Celestron C102 with the help of a inner metric thread $M 56 \times 1 \quad 6 G$ which is produced in the interface tube. The interface tube with device is tighten up the corresponding thread on the focuser tube of the refractor and fixed by locking nut.

The device electronics is enclosed in a separate case which can be removed and attached again easily. The connection to interior electronic elements, such as illumination LED, is provided via a special plug connector.

The mechanical parts are designated on the drawings as "MDnnS", where MD - prefix for MASS device, 'nn' - assembly unit number, 'S' - suffix for the specific part. The prefix is omitted when a designation is mentioned below.

2.1.2 Device skeleton

The force structure of the device consists of 3 elements: device base $\mathbf{0 1 A}$, U-profile main beam 01C and bottom tie 01D. These parts are screwed together and form rigid through-like frame. One can see it in the Fig. 2.3, where photo of the device without cover 01B is presented. This structure bears all other units and assemblies. Do not disassemble the device skeleton if there are other solutions!

Inside the device base, the mechanism for lateral shift of Fabry lens unit is mounted. On the outside, a mount ring (flange) 02C is screwed. The latter holds the Fabry lens unit and tube 09A of the optical interface.

The transversal beam 01E (called below - optical bench) is attached to the main beam.

Figure 2.1: MASS device attached to refractor, which is installed atop of the La Silla DIMM.

Figure 2.2: Main dimensions of the MASS device with optical interface.

Figure 2.3: View of the device without cover. Used coordinate system is shown, too.

The optical bench bears most parts of the device optics. On the outside of the main beam, the switching knob of the viewer mirror, $\mathbf{0 5 G}$, is placed.

The optical plate $\mathbf{0 4 A}$ with PSU is mounted on the bottom tie and covered by 01F. Also, the electronic box is set on the tie and fixed to the tie. The cover 01B (the second half of the device box) is fastened to the base and to the tie.

2.1.3 Optical bench

The optical bench $\mathbf{0 1 E}$ is a central assembly unit of the device. On the top plane of the bench four functional units are mounted:

- unit of the re-imaging mirrors RA, RB, RC, and RD;
- viewer removable mirror unit;
- focal plane unit;
- star centering mechanism.

On the bottom planes the central blind are fastened. The top and bottom views of the optical bench are shown in the Fig. 2.4. On this photo the central blind is removed.

The re-imaging unit consists of the mirror support $\mathbf{0 7 A}$ with sockets for mirrors, where the mirrors lie free, and the cover plate $\mathbf{0 7 B}$, which fixes the mirrors. The support is fastened to the optical bench with help of four M2.5 screws. The elastic separator between the part and the bench permits to adjust a little the total tilt of the mirrors holder.

Figure 2.4: The top (left) and bottom (right) views of the optical bench. Star centering unit is removed.

The viewer removable mirror is a more complex unit. It contains the support $\mathbf{0 5 A}$, the clamping cramp 05C which limits the mirror rotation and bears the Hall sensor plate, the mirror holder 05B with two half-axes 05E and 05U, and the switching Ω-like spring. The mirror MV is cemented to its holder. Also, the cover plate 05D which holds the glass plate CC with central hole is screwed to the support. Illuminating FOV LEDs are mounted at the cover plate. The plate CC is glued to the holder.

The focal plane unit includes the field aperture 06A pressed into the socket of aperture support 06B.

A blind 06C is utilized to prevent direct light passing from the field aperture to the PMT photocathodes. It also reduces the scattered light from the exit pupil elements.

All electronic parts placed in the main case of the device are located on the optical bench. The bench bears a connector for this electronics that matches the connector in the electronic box. More information about electronic elements which are inside the main box can be found in the Document [7]. In addition to the above-mentioned electronics, a Control light LED PCB is mounted to the bench directly. Also, a controller of a stepper motor of the centering unit E3 is fastened to the bench (see Fig. 2.4).

2.1.4 Other assembly units

Fabry lens unit

The Fabry lens unit includes the shifted square nut 02B with a thread for the Fabry lens holder $\mathbf{0 2 A}$. The thread serves to focus the lens. The lens itself is installed in the holder using a thin locking nut 02C. The square nut is clamped between the device base and the mount ring. The clamp pressure is regulated by a wide brass washer which can be either corrugated or planished.

The lateral shift of the square nut with LF in one direction is provided by a cam 02F with finger 02G which transmits the motion of an adjusting screw to nut motion. For another
direction, the second cam is installed. This mechanism is mounted under the device base, the fingers pass through the slots outside.

Viewer

The viewer consists of three parts: the eye-piece socket $\mathbf{0 3 A}$, the viewer tube $\mathbf{0 3 b}$. and the viewer flange 03C. The latter is permanently screwed to the box cover. The re-imaging lenses V1 and V2 are installed in the sockets of the eye-piece part and of the viewer flange with the help of locking nuts 03D.

Optical plate

The optical plate $\mathbf{0 4 A}$ bears the PSU holder $\mathbf{0 4 B}$, which is fastened by 3 screws -2 pulled and 1 pushed. From one end the holder is pressed against a low central pad (height $\approx 0.6 \mathrm{~mm}$), which is placed in the center of the optical plate. The pupil segmentation unit is set in its holder with the help of the cover plate $\mathbf{0 4 C}$.

The optical plate is mounted in the socket of the bottom tie of the device box. It may be removed and fixed back for checking or cleaning. The special cover protects the PSU and its fixing and alignment screws.

2.1.5 Electronics module design

The electronics module (see Fig. 2.5) consists of two parts: the PMTs housing and the electronics case. The parts are screwed together and are not detachable from each other.

The PMTs housing 08A contains 4 PMTs, 3 PCBs of the photon counting electronics, the teflon spacer 08C, which prevents PMT photocathodes from contact with housing, and the shutter mechanism.

The shutter mechanism consists of two blades $\mathbf{0 8 D}$ with holes, the cramp $\mathbf{0 8 E}$, the lever $08 F$, and the axis 08G. The axis passes through the hole in the housing, its rotation closes (clockwise) or opens (counterclockwise) the shutter. The shutter does not provide full darkness when the electronics is detached from the device, but protects the PMTs from direct daylight. The housing must be always closed with the cover 08 B when powered.

The PCB which bears auxiliary electronics, two external connectors, and the connector to the main-case electronics, is mounted on the frame $\mathbf{0 8} \mathbf{H}$ of the electronics case. The cover $\mathbf{0 8 I}$ protects the electronics from the outside. In the cover, a window for the LED indicators is made. When electronics is powered, the green LED shines. A presence of HV is indicated by the red LED and data exchange - by the yellow LED.

2.2 Alignment possibilities

Some alignment features are provided here. Most of them are intended for assembly process only. Other alignments are done when the device is attached to the feeding telescope.

The alignments are:

- focusing of the Fabry lens;
- lateral shifts of the Fabry lens;
- tilt of the viewer mirror;

Figure 2.5: View of the detached electronics module. A photomultiplier PMT R7400 is shown separately. A pen on the photo is placed for comparison.

- centering of the CC plate;
- rotation a PSU segments around their axis;
- tilts of the PSU in XZ and YZ planes;
- tilts of the MASS re-imaging mirror assembly in two directions;

2.2.1 Fabry lens and viewer optics

The focusing of the Fabry lens is done by rotating the LF holder in the thread of the square nut 02B. The error of 0.5 mm in the Fabry lens position produces the magnification error less than 0.5% and the shift of the entrance pupil plane along optical axis about $\pm 100 \mathrm{~mm}$. So, an accuracy of the Fabry lens focusing about 0.5 mm is more than sufficient. The full range of focusing of $\pm 4 \mathrm{~mm}$ around the nominal position is provided. The nominal Fabry lens position depends on the particular feeding telescope.

The lateral shifts of the LF with an accuracy of about 0.1 mm (which corresponds to 1.5 mm in the entrance pupil) and with the full range of $\pm 2 \mathrm{~mm}$ ($\pm 30 \mathrm{~mm}$ in the entrance pupil) in both directions provide practically identical shifts of the exit pupil in the PSU plane. This alignment is aimed to compensate for the imperfections in the Fabry lens centering and in the device centering and tilt. It is produced by two screws accessible via 3 mm holes in box cover 01B with help of Hex1.5 key.

The inclination of the viewer mirror is fixed during the device assembly and should provide beam axis parallel to the viewer mechanical axis. The tilts are regulated with help of set screw
in the viewer support cramp 05C.
The residual offset of the on-axis star image from the viewer center may be eliminated by shifting manually the glass plate CC, up to $\pm 1 \mathrm{~mm}$ in both directions.

2.2.2 MASS channels optics

After the MASS segmentator is fixed in its place, the position angles of its segments should be tuned to their correct values of ± 15 and $\pm 45^{\circ}$; the segmentator is inclined as a whole as well. The aim of these alignments is to direct the reflected beams precisely into the centers of the respective MASS re-imaging mirrors. The position angles must be set to within $\pm 1^{\circ}$ and the segmentator inclination is tuned with a precision of $\pm 0.1^{\circ}$ in both directions to place the beam spots in the re-imaging mirrors with sufficient accuracy. These alignments are provided by the push-and-fix screw pairs having the full range of about $\pm 1.5^{\circ}$ (this is enough, given the roughly correct initial segmentator setting under these angles).

Finally, to center the PSU images on the PMT photocathodes, the re-imaging mirror assembly is aligned with an accuracy not worse than $\pm 0.2^{\circ}$ (corresponds to the centering errors of about 1 mm on the PMTs). Given that the mirror supports are already made with correct angles, the alignment range of $\pm 1^{\circ}$ is sufficient.

2.3 Disassembling and assembling

2.3.1 Disassembly sequence for alignment, maintenance or repair

Do not forget to close the PMTs shutter before disassembly of the device! Disassemble the parts only to the state needed for the device maintenance or optics alignment or cleaning. Some parts of the device can be removed without device opening, in arbitrary order:

- The Fabry lens can be removed with its holder only. Before, mark the position of the holder inside the square nut to re-establish the focusing at assembly.
- The viewer can be detached if the instrument is aligned and further work is planned in automatic mode. For this, unscrew the viewer tube with eye-piece together from viewer flange. Protect the first viewer lens V1 by any plastic cup.
- To check or clean a V2 lens, unscrew the viewer tube from an eye-piece socket.
- The electronics module can be detached to do some checks or alignments. Turn off the device, be sure that PMTs shutter is closed. Remove 4 M 3 screws (2 near the viewer and 2 from the bottom tie) completely, then pull the electronics module away from device box, to unplug it from the internal connector.
- Optical plate with MASS PSU can be removed to check the optics or the position of the exit pupil. First, slacken 2 screws M2.5 and remove the optical plate cover. When unscrewing 3 M 2.5 screws completely, support the plate by hand.

To provide access to the optics inside of the main device box, the cover 01B must be removed. To do this: detach the electronics module first, unscrew 4 M 3 screws -2 which fasten the cover to the device base (near the viewer) and 2 which fasten the cover to the bottom tie. With some effort remove cover away in the Y-direction.

Then, the optical bench where most of the optics is installed, can be removed from the main beam. To do this, from inside of the main beam, unscrew completely 4 screws which are fastened the bench to mainbeam.

Flip the mirror in the viewer-on position to detach the mirror semi-axis from the groove in the mirror knob. Pull gently the optical bench out in the Y-direction.

Further disassembly is not recommended. If it is really needed, consult the designers for additional recommendations.

2.3.2 Disassembly of the electronics module

Disassembling the electronics module includes several steps, which must be done sequentially. To remove the PCB of power and auxiliary electronics, one must:

- unscrew 3 M 2.5 screws which fasten the electronics cover 08I and remove this cover;
- unscrew completely 2 M2.5 screws from the plate 08J of DB9 line connector;
- unscrew 3 M2 screws that fasten the PCB itself;
- if it is necessary to remove the PCB completely, unsolder the HV yellow cable and disconnect the blue cable.
To change the PMTs or repair the counting electronics, do the following:
- unscrew 4 M2 screws from the PMT housing cover 08B and remove this cover;
- unscrew completely 2 M 2 screws from the counters PCB (connector side) and unscrew from the base the long M2 screw with teflon tube;
- disconnect this PCB and turn it by 180°;
- unscrew 3 M2 and 2 M1.6 screws from the amplifiers PCB;
- with the help of a thin screwdriver ($<1.5 \mathrm{~mm}$), begin to unscrew 2 M1.6 screws through the holes that are nearly opposite to the connectors edge of the PCB, simultaneously pulling up the PCB itself;
- when these screws are detached from the PMT housing, fold the PCB very carefully, pulling the PMTs out of the housing.

2.3.3 Assembly

Assembly is done in reversed order. A few recommendations may be useful for this process.

- When mounting the optical bench back to the main beam, pay attention to the position of the groove in the axis of the viewer knob. The mirror half-axis must hook into this groove. Be sure that the bench lies correctly in the beam before tightening finally the 4 screws.
- When installing the cover box back to the device, do not damage the rubber cord which is glued in the grooves of the bottom tie and the device base. Also, check that the connector on the optical bench is correctly inserted in the corresponding hole of the cover. Be sure not to leave a slot between the upper edge of the cover and the device base.
- When fastening the PCB, be sure that the PCB is laid correctly and tightly.
- When attaching the electronics module, be careful to insert the connector pins correctly into the matching connector on the optical bench.
- When installing the holder with Fabry lens, do not reverse it. The more convex surface of the Fabry lens must face the telescope.

Chapter 3

Alignments

3.1 Preliminary alignments

Preliminary MASS optics alignments are performed during device assembly. These alignments include a correct placement and tilt of the optical elements to provide light pass through MASS channels. Alignment possibilities were described above in Sec. 2.2. To align the optics, one will need to prepare some additional tools: a kind of the optical test bench, the laser light source, and a telescope model (see below).

The optics test bench may be arbitrary but providing enough rigidity and the source-toMASS distance of the order of $0.5-1$ meter. The attachment of the device to the bench must provide the possibility to adjust the position of the light source (laser beam) with respect to the device in two directions.

The semiconductor laser of no more than 3 mW power is set on the opposite end of the bench. The variable resistor of a few KOhm is recommended to be connected sequentially with the laser to adjust laser beam intensity. The laser support must also allow the slight corrections by angle.

In addition, one needs the weak negative lens to attach to the laser to make the slightly divergent beam. It is needed to illuminate homogeneously the entrance pupil of the model telescope. The latter is attached to the device instead of the Fabry lens holder and consists of the good-quality objective lens (focal length about 50 mm) and the pupil diaphragm of the size about 5 mm set in front of the objective at the distance equal to the lens focal distance. The telescope focusing should be possible.

3.1.1 MASS PSU alignment

Before installing the PSU, rotate its segments around rotation axis according to Sec. 1.3.1. Namely, if seen from the PSU base side, the rotation angle is defined by groove in the base of each segment. Note that the D-segment base is closest to the PSU handler and the A-segment base is uppermost. The segments must be rotated with respect to the YZ-plane by following angles: D - at 45° and C - at 15° counterclockwise; B - at 15° and A - at 45° clockwise. Do not tighten the PSU cover plate.

Switch on the laser and direct its beam into the field aperture. Provide that laser beam falls on the PSU installed. If the laser beam is wide enough (but no lens is installed in front of the
laser), all four segments of the PSU will be illuminated. Otherwise, firstly point the beam on the largest D -segment. One can see the reflected beam spots near the re-imaging mirrors.

Correct the segments orientation will direct the beams onto the mirror centers. With help of a thin screwdriver or awl, rotate the first D-segment in such a position that the reflected beam falls closest to the center of D -mirror. After this, try to align the segment C similarly, fixing the D -segment orientation with help of another screwdriver. Then proceed with B and A in the same fashion. It is evident that, having the widest beam, the D -segment is most critical in alignment. After finishing the tuning of rotation angles of segments, tighten the PSU cover plate.

In principle, it is possible to use a special mask with the marked mirror centers put atop of the mirrors, but normally the laser beam spots are sharply seen at mirror surfaces.

After doing these rotating alignments, try to set the beams closer to the mirror centers using tilts of the PSU holder with help of 3 screws which fasten it to optical plate. Normally, a combination of the proper tilt of the PSU support and appropriate rotation angles of the segments provide the reflected beams falling close enough to the re-imaging mirror centers that no light is lost somewhere in the further path due to vignetting.

There is no individual alignment for each re-imaging mirror. The support of those mirrors as a whole can be tilted slightly in two directions. This permits to align a little the position of segment images built by re-imaging mirrors RA, RB, RC, and RD on the PMT photocathodes. To check the correct position of the images, a special mask can be used. The exact positions of the PMT photocathodes with respect to electronics module reference plane are shown in Fig. 3.1. The manufacturing accuracy is sufficient to provide right image centering on the PMT photocathodes.

Figure 3.1: Photocathodes position with respect to the reference plate of the bottom tie.

Pay a special attention to D-segment image, because it is the largest one. To check the pupil images as they will be on photocathodes, attach the model telescope to the device. With help of a negative lens, produce the divergent laser beam, focus the model telescope. In the dark room, the images of segments are seen on the paper mask placed in the plane of PMTs photocathodes. Also, the images can be observed directly using a magnifying lens when PSU is illuminated by any scattered light.

The described alignments are normally done in the laboratory once after the device optics assembly. The rest alignments related to the installation of the device on the feeding optics are described below.

3.2 Device alignments at the telescope

3.2.1 Fabry lens position

First alignments after the device attachment to telescope are convenient to do with the transparent plastic mask, where the size and position of the exit pupil are drawn on the front side. The mask is mounted definitively instead of the optical plate $\mathbf{0 4 A}$. The mask permits to do lateral alignments of the Fabry lens and focusing the lens. Also, electronics module must be detached.

Illuminate well the entrance aperture of the telescope or point telescope at the bright object such as a white wall. The image of the entrance aperture of the telescope pupil can be viewed directly on the mask or with help of a magnifying lens. Put this image in the center of the marked circle, rotating the alignment screws of LF lateral shift.

Figure 3.2: System magnification K (solid line) and entrance pupil plane position b_{E} (dashed line) dependence on the Fabry lens focusing (left) and transfocator lens position c (right). - $d a^{\prime}$ is a distance between the device focal plane and LF. c is a distance between the device focal plane and TF. Black line - for nominal focal lengths (60 mm and -18 mm), blue - at 1.5% less, red - at 1.5% greater.

Place some flat opaque object (mask) with a sharp edge (e.g. a paper stripe) into the plane of the entrance pupil (top end of the telescope tube). Observe the image of this mask in the plane of exit pupil. If the Fabry lens is focused well, the pupil image with a mask shadow will be seen sharply. Otherwise, remove the side cover 01B and optical bench 01E. After this, it is possible to rotate Fabry lens holder in needed direction.

The LF shift can be estimated with help of the Fig. 3.2. For this, move the mask away from the telescope top at about 0.5 m . If the mask image sharpness will improve, then LF is located too far from the focal plane of the instrument. Rotate LF holder counterclockwise at 2 revolutions. Repeat the procedure again to reach the correct LF focusing.

Then check the correct position of the exit pupil again. When Fabry lens is focused and laterally aligned, remove the plastic mask, install the optical plate and the optical bench.

To check MASS channels, look at PSU through PMT holes with help of a lens. Segment images must be uniformly illuminated without any vignetting.

3.2.2 Viewer alignment

When a star image is located in the center of aperture (it can be checked again by a partial illumination of the telescope entrance) the viewer can be aligned, too. Look in the viewer. To see an illuminated central hole, attach the electronics module.

If the star image is offset from the center of the illuminated circle, one needs to detach the side cover and loosen the CC glass holder fixing screws. Using a magnifying lens for controlling the star image in the glass hole, move the holder until star drops in the center of the hole. Very precise alignment is not needed here. When done, tighten the screws to fix the glass holder to the viewer mirror support and mount the side cover 01B at the device (see Sect. 2.3.3). Looking in the viewer, check focus. Viewer focusing is made by eye-piece shifting in ocular tube.

Chapter 4

Critical parameters determination

4.1 System magnification

As it follows from Sect. 1.2.1, a system magnification depends on parameters of the telescope optics as well as parameters of the MASS optics. The system magnification transforms the physical dimensions of the pupil segmentation elements into the sizes of the instrument annular entrance apertures which are included in the theoretical formulae. Therefore, exact system magnification is needed for MASS correct work.

The measurement of the system magnification has to be performed in a dark room. All the alignments and a real telescope focusing must be done before.

Remove the electronics module. Put some strong light source in front of the channel D hole in the bottom tie 01D (the hole closest to the connectors side) to get the segmentator fully illuminated. The size of the source must be not less than 4 mm , which is the D-segment image size on the photocathode created by the re-imaging mirror. The location of this source has to coincide with the D-segment image place; light beam from the source must be directed in the Channel D re-imaging mirror. If the source is not large enough, displace it from the position of the D-channel photocathode. Note, that angle between device axis and direction to the re-imaging mirror is about 15° in the YZ plane.

The segment D image is built in the entrance pupil plane of the MASS + telescope system. It has a blue-green color due to the selective reflection by re-imaging mirror. The edges of the segment D image are easily examined with a magnifying lens. Put a transparent ruler or other precise measurement tool in the plane of the entrance pupil. Use a magnifying lens to see simultaneously the D-segment image edges and the ruler clearly. Measure the outer and inner diameter of the image.

Alternatively, some semi-transparent screen (paper) may be placed in the plane of the entrance pupil and, if the light source is bright enough and well collimated (like LED flash), one can see directly the D-segment image. Mark the edges of the image on the screen. Then, measure the picture by any ruler.

While examining the edges of the D -segment image, make sure that there is no vignetting in the system (edges are equally sharp, vertical size is equal to the horizontal size).

Similarly, repeat the same procedure putting the light source in channel C. This helps to control the magnification obtained by measuring D -segment. Note, nevertheless, that the less image size which is measured, the less precision of the magnification is obtained.

The magnification of the system is obtained by division of the measured sizes by the corresponding physical diameters of the segment D and C of the segmentator (see Table 1.3). If the image is well-focused, the precision of image size measurement of the order of 0.5 mm is easily achievable and is more than enough for our purpose. Check the matching of these estimations, compute the mean magnification value and put it in the device.cfg file.

4.2 MASS detectors parameters

4.2.1 PMT optimal voltage and discrimination determination

In order to choose the working point (optimal HV level common for all PMTs, and individual discrimination levels), one needs to conduct the counting characteristics registration.

Counting characteristics are recorded using the Detector Counting measurement function of the Turbina program (Menu Tools) (see [11]). Since the fluxes from the control light differ much in different channels, at least two levels of the control light are recommended to set in the sequence, to have the curves with the plateau fluxes from 300 to 1000 pulse/ms. With lower signal level, the precision of the non-Poisson parameter is degraded, with bright light, the strong non-linearity is already encountered. An additional control light level equal to zero (0) must be set in a sequence to get the dark current characteristics.

The grid of high voltage levels covers normally the range 550 to 950 V with a 50 V step. While fine-tuning the settings subsequently, the step and range may be lowered. The discrimination threshold level is tuned within a range from 0.3 to 0.9 mV with a step 0.1 mV . These input parameters for the measurement are set in turbina.cfg file in the Section Operations Subsection Detectors counting measurement.

The accumulation time of each point should be long enough for the reliable estimate of non-poissonity. The estimate of the precision of its determinations is:

$$
\begin{equation*}
\epsilon_{p}^{2}=\frac{2}{N}\left(1+\frac{1}{F}\right) \tag{1}
\end{equation*}
$$

where N is a total number of micro-exposures, F is a mean count per micro-exposure. In practice, to achieve the relative precision of p about 0.5% one needs the accumulation time more than 100 s at high fluxes. This implies about 2-4 hours process for the total cycle of measurements.

Since the drifts and temperature dependences are possible, the repetitive measurements for checking the working point stability are necessary. These measurements can be done with a narrower range of input parameters to economize time.

The dark current characteristics are aimed to determine the range of the HV level and discrimination thresholds where the dynode or pulse amplifier noise is negligible.

For making the light characteristics, one needs to measure the relations of both flux and non-Poisson parameter p on the HV level U. An example of such relations is given in Fig. 4.1.

From this figure it follows that the high voltage must be not lower than 800 V . The counting characteristics become flat enough, fluxes depend weakly on the discrimination threshold and the non-Poisson parameter approaches the value about unity only above this value. Note, nevertheless, that for the threshold of 0.9 mV the HV has to be not less than 900 V to provide a low slope of the HV dependence. On the other hand, the HV of 800 V is quite enough for the threshold of 0.5 mV .

Channel B, 11/11/03, t=+10

Figure 4.1: Light counting functions. Left: Flux dependence on the high voltage for 7 threshold levels ($0.3,0.4,0.5,0.6,0.7,0.8$ and 0.9 mV), lowest curve corresponds to the 0.9 mV level. Right: Non-Poisson parameter as a function of Voltage for 7 threshold levels, here lowest curve corresponds to the 0.3 mV threshold.

It is better to use HV as low as possible. Since the HV value is common for all the PMTs, joint analysis must be done. Doing this, keep in mind that non-Poisson parameter is most critical for PMT in the channel A. Note, that the upper limit for PMT R7400 is 950 V and this value should not be selected for a long term usage.

An additional constraint is the over-light protection. Note here, that since the relation of an average anode current on the high voltage supply is quite steep, the safety limit of the over-light system (counted in pulses per second) decreases significantly when the HV level grows.

4.2.2 Non-linearity and Non-poissonity determination

In order to treat correctly the photon statistics and compute the correct scintillation indices, one has to know the non-linearity parameter τ and the non-Poisson parameter p. Correct value of the parameter τ is critical at high fluxes (in C and D-channels), while an exact value of the parameter p is needed at low fluxes (in A and B -channels).

Both these parameters are derived from the dependence of p on the light flux F which needs to be specially obtained. To get the $p-F$ relation (see previous section), one can use the special function Detector Statistics measurement in the Turbina program, placed in menu item Tools.

The measurements of flux F and non-Poisson p values are made with currently set values of the discrimination thresholds of counters and high voltage level. The grid of the control light relative intensities is supplied dense enough to get the needed precision of the output parameters. Some fifty values from 0.0 to 1.0 with a step 0.02 are recommended. The duration of one point

Figure 4.2: Dependence of non-Poisson parameter p on flux F for A and B channels. Line is linearly fitting the measured points.
measurement is determined by the formula (1) and may be of the order of 40 sec or more. These input parameters for the measurement are set in turbina.cfg file in the Section Operations Subsection Detectors statistics measurement.

The typical relation of the non-poissonity p on the average flux in channels A and B is shown in Fig. 4.2. It is clear that this relation is practically linear. It should be noticed meanwhile that the better fit is obtained with a quadratic approximation of the relation.

Use the least-square method to get the linear regression coefficients (the handy graph-plotting program xmgrace provides such a possibility as many others). The crossing point of a line fit with the p-axis (constant term in regression) determines the parameter p. The line slope in the point of zero flux is equal to -3τ where the non-linearity τ is expressed in milliseconds if the flux F is counted in pulses per milliseconds. The slope of fitting line in the Fig. 4.2 corresponds to a non-linearity parameter about 12 ns .

Appendix A

Optical parts specifications

A. 1 The specifications for MASS purchased optical elements

Des.	Part and parameters	Manufacturer	Stock name/number	Total q-ty	Rem.
TF	Transfocator lens Singlet LENS Focal length: -18 mm Diameter: $9.0_{-0.1}^{+0.0} \mathrm{~mm}$	Edmund Optics	PCV9x-18MgF2 TS NT45-381	1	1
LF	Fabry lens Focal length: 125 mm Diameter: $25.0_{-0.2}^{+0.0} \mathrm{~mm}$	Edmund Optics	ACH25x125MgF2 TS NT32-492	1	1
V1,2	Viewer lenses Focal length: 50 mm Diameter: 18 mm	Edmund Optics	ACH18x50MgF2 TS NT32-913	2	1
K	Kellner eyepiece Focal length: 12 mm Barrel diameter: $1 \frac{1}{4}$ inches	Any	-	1	

1. See specification at www.edmundoptic.com

A. 2 The specifications for MASS special optical elements manufactured by the contractor

\begin{tabular}{|c|c|c|c|c|c|}
\hline Des. \& Part and parameters \& Part number \& Ref. \& Total q-ty \& Rem. \\
\hline MV \& \begin{tabular}{l}
Removable mirror \\
Size: \(12 \times 18 \mathrm{~mm}\) \\
Substrate: BK7 glass \\
Thickness: 2 mm \\
Surface Accuracy: \(\lambda / 4\)
\end{tabular} \& OP4 \& op4.dwg \& 1 \& 1
2 \\
\hline RA-D \& \begin{tabular}{l}
MASS mirrors \\
Diameter: 12.8 mm Curvature radius: 102 mm Substrate: BK7 glass \\
Thickness: 3 mm Surface Accuracy: \(\lambda / 4\)
\end{tabular} \& OP1 \& op1.dwg \& 4 \& 1

2

\hline PSU \& | Segmentator |
| :--- |
| Diameters: see Tab. 1.3 |
| Curvature radius: 250 mm |
| Substrate Material: Hard bronze |
| Surface Accuracy: $\lambda / 4$ | \& \& md10a.dwg md10b.dwg md10c.dwg md10d.dwg \& 1 \& 1

2

\hline CC \& | Circle reticle |
| :--- |
| Central hole 2.3 mm |
| Thickness: 1.0 mm |
| Diameter: $13.0_{-0.2}^{+0.0} \mathrm{~mm}$ | \& OP6 \& op6.dwg \& 1 \&

\hline SF \& | Spectral filter |
| :--- |
| Diameter: 11 mm |
| Surface Accuracy: $\lambda / 2$ | \& OP5 \& op5.dwg \& 1 \& 2

\hline
\end{tabular}

1. Coating: Protected aluminum, R avg. $>87 \%$
2. Surface Quality: $40-60$ scratch and dig over central 95% of surface

Appendix B

List of mechanical parts

Table contains the list of mechanical parts which are needed for production of the MASS device. The parts are grouped in assembly units. Remarks "S", "R", "C" are the assigned ranking estimations of the part work-consuming - simple, rotation-symmetry and complex. Needed fasteners and standard items are not included in this table.

Des.	Part	Material	Q-ty	Rem.
AS01	Box			
MD01A	Device base	HA	1	C
MD01B	Box cover	HA	1	S
MD01C	Main beam	HA	1	C
MD01D	Bottom tie	HA	1	C
MD01E	Optics bench	HA	1	C
MD01F	PSU cover	HA	1	S
MD01G	Connector support	HA	1	S
AS02	Fabry lens unit			
MD02A	Fabry lens holder	HA	1	R
MD02B	Shifted square nut	HA	1	R
MD02C	Locking nut No. 1	HA	1	S
MD02D	Mount ring	HA	1	R
MD02E	Cam axis	Steel	2	S
MD02F	Cam	HA	2	S
MD02G	Cam finger	Steel	2	S
AS03	Viewer			
MD03A	Ocular socket	HA	1	R
MD03B	Viewer tube	HA	1	R
MD03C	Viewer flange	HA	1	R
MD03D	Locking nut No. 2	HA	2	R
AS04	Pupil segmentation unit			
MD04A	PSU support	HA	1	C
MD04B	MASS segmentator holder	HA	1	C
MD04C	Cover plate	Steel	1	S

List of mechanical parts. Continuation

Des.	Part	Material	Q-ty	Rem.
AS05	Viewer mirror unit			
MD05A	Support	HA	1	C
MD05B	Mirror holder	HA	1	C
MD05C	Clamping cramp	HA	1	S
MD05D	Cross cover plate	HA	1	R
MD05E	Right axis	Steel	1	R
MD05F	Knob axis	Steel	1	R
MD05G	Switching knob	HA	1	R
MD05H	Bushing	Steel	1	S
MD05I	Left axis	Steel	1	R
MD05J	Bushing nut	Steel	1	R
AS06	Focal unit			
MD06A	Field aperture	Steel	1	R
MD06B	Aperture support	HA	1	R
MD06C	Central blind	HA	1	R
MD06C	Filter holder	HA	1	R
AS07	MASS optics holders			
MD07A	Mirrors sockets	HA	1	C
MD07B	Mirrors cover plater	HA	1	S
MD07C	Motor cramp	HA	1	C
MD07D	Worm pivot	HA	1	S
AS08	Electronics box			
MD08A	PMT house	HA	1	C
MD08B	PMT cover	HA	1	S
MD08C	Teflon spacer	TF	1	S
MD08D	Shutter blade	Steel	2	S
MD08E	Shutter cramp	Steel	1	S
MD08F	Shutter lever	Steel	1	S
MD08G	Shutter axis	Steel	1	S
MD08H	Electronics frame	HA	1	C
MD08I	Electronics cover	CA	1	S
AS08	Optical interface			
MD09A	Interface tube	HA	1	R
MD09B	Transfocator holder	HA	1	R
MD09C	Holder support	HA	1	R
MD09D	Locking nut No 3	HA	1	R

